### Thermal and Fast Reactor Benchmark Tests of JENDL-3T

### Hideki Takano and Kunio Kaneko

### Department of Reactor Engineering Japan Atomic Energy Research Institute, Tokai, Ibaraki, Japan

Abstract: Benchmark tests of JENDL-3T data were performed by analysing a lot of critical experiments for thermal and fast reactors, and the results were compared with those obtained using JENDL-2 data. The calculated results are summarized as follows:

(1) Thermal reactors: In U-235 fuel cores, the  $k_{eff}$  calculated with JENDL-3T cross sections increased about 0.3 % with respect to the JENDL-2 based values. The increase reflects the 0.24 % increase in  $\nu$ (U-235) at the 2200m/sec. In Pu-239 fuel cores, the  $k_{eff}$  calculated with JENDL-3T data decrease about 0.6 % with respect to the JENDL-2 values, and the overprediction by JENDL-2 is improved. In U-233 fuel cores, the  $k_{eff}$  obtained with JENDL-3T data decrease about 1 % with respect to JENDL-2 values, and gives good agreement with the experiments.

(2) Fast reactors: The  $k_{eff}$  calculated with JENDL-3T data is overestimated for U-fuel cores and underestimated for Pu-fuel cores. The reaction rate ratios of Pu239(n,f)/U235(n,f) are in a good agreement with the experimental values, though U238(n,c)/Pu239(n,f) and U238(n,f)/U235(n,f) are overestimated. Moreover, the sodium void reactivity is in a good agreement with the experiments, and this is compared with overprediction of that obtained with JENDL-2 data.

(benchmark test, JENDL-3T, thermal reactor, high-conversion light water reactor, fast reactor, effective multiplication factor, reaction rate ratio, sodium void reactivity, Doppler reactivity, reaction rate distribution)

#### Introduction

A temporary nuclear data file JENDL-3T<sup>1)</sup> has been generated for testing an evaluated data file of JENDL-3. To assess the adequacy of JENDL-3. T data for use in nuclear reactor design and applications, benchmark calculations are required for a number of critical experiments for thermal and fast reactors.

The calculations for thermal and high conversion light water reactors (HCLWR) are performed with SRAC<sup>2</sup> code system. The selected benchmark cores are a number of critical experiments with different fuels of U-235, U-233 and Pu-239, two water-moderated lattice(TRX-1 and 2)<sup>3</sup>, two heavy water-moderated cores (ETA-1 and 2)<sup>4</sup> and a large number of uniform water-moderated lattices collected by Strawbridge and Barry<sup>5</sup>. The PROTEUS cores are selected for the HCLWR benchmarks.

Fast reactor benchmark calculations are performed for twenty-two benchmark cores selected from the ZPR, ZPPR, FCA, ZEBRA, SNEAK and VERA critical experiment series. These calculations are based on one and two dimensional diffusion theories.

## Benchmark Testing Cores

### Thermal Reactor

A variety of critical and lattice experiments were selected as follows: The ORNL series  $^3$  are unreflected spheres of uranyl nitrate in  $\rm H_2O$ . The ratio-ranges of  $\rm H/U-235$  are from 972 to 1835. The critical experiments selected by McNeany and Jenkins  $^6$  contain the high enriched U-235 and U-233 with the ratio-ranges of H/U from 0 to 1400. There are two experiments including U-233 and Th-232 fuels. The PNL 1 - 5 series  $^3$  are homogeneous aqueous plutonium nitrate experiments with the H/Pu-239 ratio ranging from 131 to 1204.

The uniform water-moderated lattice experiments collected by Strawbridge and Barry<sup>5)</sup> contain 61 U-metal and 55 UO<sub>2</sub>-rods lattices covering a wide range of parameters.

Lattice parameters are measured in the TRX3 and ETA 1 cores. The TRX-1 and 2 represent fully reflected fuel rods of enriched 1.3 % uranium, aluminum-clad and H2O-moderated. The ETA-1 and 2 are tight Th-U235 and Th-U233 lattices moderated with heavy water.

### HCLWR

The PROTEUS series  $^{7)}$  are tight lattice experiments with the moderator-to-fuel volume ratio of 0.5 for high conversion light water reactors. The fissile plutonium enrichments are about 6 and 8 % for the cores (1, 2 and 3) and (4, 5 and 6), respectively. Three different  $H_2O$ -voidage states were measured, viz. 0. 42.5 and 100 % void, to check the void coefficient.

## Fast Reactor

Fast reactor benchmark cores consist of 17 benchmark assemblies collected for ENDF/B-IV data testing<sup>3</sup>, the JOYO and MONJU mock-up cores (FCA-V-2 and FCA-VI-2), MORZART cores(MZA and MZB) and the JUPITER reference core (ZPPR-9). These have a wide variety from 12 to 4600 liter of core sizes, from zero to eight concentration ratios of fertile to fissile in core, and of 15 plutonium and 7 uranium fuel cores as shown in Table 1.

## Benchmark Calculations

Benchmark experiments were analysed with SRAC using two cross section libraries SRACLIB-JENDL2 and -JENDL3T based on JENDL-2 and JENDL-3T data, respectively. These libraries were produced with the processing codes, TIMS-PGG<sup>8)</sup> and SRACTLIB<sup>2)</sup>. The RESENDD code was used to treat the Reich-Moore resonance formula for Pu-239. This library contained 74-group constants for fast energy region and 48-group constants for thermal energy region. In resonance energy region, a ultra-fine group library was prepared for some important heavy resonant nuclides. Cell spectrum calculations were performed by the collision probability method. The

| Table 1 Fa   | st cr | itical | benchmark cores |
|--------------|-------|--------|-----------------|
| Assembly     | fuel  | volume | (1) N8/N9 or N5 |
| VERA-11A     | Pu    | 12     | 0.05            |
| ZEBRA-3      | Pu    | 50     | 8.5             |
| SNEAK-7A     | Pu    | 110    | 3.0             |
| FCA-5-2      | Pu    | 200    | 2.3             |
| ZPR-3-53     | Pu    | 220    | 1.6             |
| SNEAK-7B     | Pu    | 310    | 7.0             |
| ZPR-3-50     | Pu    | 340    | 4.5             |
| ZPR-3-48     | Pu    | 410    | 4.5             |
| ZPR-3-49     | Pu    | 450    | 4.5             |
| ZPR-3-56B    | Pu    | 510    | 4.5             |
| MZA          | Pu    | 570    | 3.9             |
| FCA-6-2*     | Pu    | 630    | 6.6             |
| MZB          | Pu    | 1800   | 5.8             |
| ${f ZPPR-2}$ | Pu    | 2400   | 5.5             |
| ZPR-6-7      | Pu    | 3100   | 6.5             |
| ZPPR-9*      | PU    | 4600   | 9.4             |
| VERA-1B      | U     | 30     | 0.07            |
| ZPR-3-6F     | U     | 50     | 1.1             |
| ZPR-3-12     | U     | 100    | 3.8             |
| ZPR-3-11     | U     | 140    | 7.5             |
| ZEBRA-2      | U     | 430    | 6.2             |
| ZPR-6-6A     | U     | 4000   | 5.0             |

\* Two-dimensional benchmark core

ultra-fine group method was used in the resonance region below 130 eV. Criticality calculations were performed with  $P_1$ - $S_8$  approximation by a one-dimensional  $S_n$ -transport code ANISN.

The fast reactor benchmark calculations for  $k_{eff}$  and reaction rate ratios were performed with one-dimensional diffusion and transport codes. Reaction rate distributions, Doppler and Na-void reactivities for ZPPR-9 and FCA-VI-2 cores were calculated by two-dimensional diffusion theory. For these calculations, a JFS3-JENDL3T library with 70-group structure was produced by TIMS-PGG processing code.

### Results and Discussions

## Thermal Cores of U-235 Fuel

Figure 1 shows the  $k_{eff}$  obtained for ORNL and McNeany-Jenkins cores as a function of the atomic ratio of H/U-235. The results are underestimated with increase of H/U-235 ratio. The  $k_{eff}$  calculated for 116 cases of Strawbridge and Barry were as follows: The averaged  $k_{eff}$  obtained for UO<sub>2</sub>-rod lattice cases was 0.991 for JENDL-3T and 0.983 for JENDL-2. The averaged  $k_{eff}$  for U-metal rods are 0.992 and for JENDL-3T and 0.989 for JENDL-2, respectively. It is main reason for these differences that the  $\nu$ -value of U-235 for JENDL-3T is 0.24 % larger than JENDL-2 data at the 2200 m/sec. Integral lattice parameters were calculated for the TRX-1 and 2 cores, and  $\rho_{28}$  and  $\delta_{28}$  for JENDL-3T were overestimated by 6 - 9 %.

### Thermal Cores of U-233 Fuel

Figure 2 shows the multiplication factors calculated for McNeany- Jenkins cores as a function of the ratio H/U-233. The results obtained by JENDL-3T data become about 1.0 % smaller than those by JENDL-2 data and give good agreement with experiments.

The integral parameters  $\rho_{02}$ , CR, CR\* and  $\delta_{02}$  calculated for the ETA-1 and 2 cores using JENDL-3T data were significantly improved over corresponding analyses using JENDL-2 data<sup>9)</sup>. This reason is that Th-232 capture cross sections of JENDL-3T are significantly larger than JENDL-2 data in the resonance region below 200 eV.



Fig.1  $k_{eff}$  for  $^{235}U$  fuel cores (ANISN,  $P_1S_8$ )



Fig. 2 keff for 233U fuel cores (ANISN, PiSa)



Fig. 3 Keff for 239Pu fuel cores (ANISN, PiSa)

# Thermal Cores of Pu-239 Fuel

The calculated  $k_{eff}$ s are shown as a function of the ratio H/Pu-239 in Fig.3. The  $k_{eff}$  obtained using JENDL-3T data are about 0.6 % smaller than those using JENDL-2 data, and the overprediction by JENDL-2 is improved. Figure 4 shows the deviation of the Pu-239 fission cross sections for JENDL-3T from those of JENDL-2. It is observed that the fission cross sections of JENDL-3T are significantly smaller than JENDL-2 data in many energy groups. This causes the decrease of  $k_{eff}$  obtained using JENDL-3T data.

### HCLWR PROTEUS Cores

The results calculated for PROTEUS cores 1-3 are shown as a function of the coolant void fraction (%) in Figs. 5 and 6. The k-infinity using JENDL-3T gives very good agreement with experi-



Fig. 4 Deviation for  $\sigma_f(^{239}Pu)$  of JENDL-3T from JENDL-2



Fig. 5 Comparison of k. for PROTEUS cores



Fig.6 U<sup>236</sup>(n, r)/Pu<sup>239</sup>(n, f) for PROTEUS cores

ments in the zero void state as seen in Fig.5. However, the k-infinity of JENDL-3T depend stronger than that of JENDL-2 on coolant voidage states.

Figure 6 shows the comparison of reaction rate ratio U238(n,c)/Pu 239(n,f) (C8/F9) corresponding to conversion ratio. The results using JENDL-3T are about 2 % larger than those using JENDL-2.

In U238(n,f)/Pu239(n,f) (F8/F9) for threshold fission reaction rate, the results using JENDL-3T increased still more the overprediction obtained by JENDL-2 for the experimental values.

### Fast Critical Assemblies

One-dimensional benchmark calculations were performed for 20 benchmark cores as shown in Table 1. The  $k_{eff}$  obtained with the JENDL-3T data are overestimated for uranium cores and are und-



Fig.7  $k_{eff}$  for fast critical cores



Fig.8 C/E values of  $\langle \hat{\sigma}_{\epsilon}^{39}/\hat{\sigma}_{\epsilon}^{39} \rangle$ 



Fig. 9 Deviation for  $\sigma_c(^{236}\text{U})$  of JENDL-3T from JENDL-2

erestimated for plutonium cores as shown in Fig.7. The overestimate for uranium cores is due to a large  $\nu(U-235)$ -value evaluated for JENDL-3T, and the underestimate for plutonium cores is due to smaller Pu-239 fission cross sections as shown in Fig.4. The JENDL-3T data are smaller 5 % than the JENDL-2 data in the energy range from 10 KeV to 1 MeV. This causes 1.7 % reduction of  $k_{eff}$  for Pu-cores and about 4 % increase for C8/F9. In the resolved resonance region below 1 KeV, the JENDL-3T data smaller than JENDL-2 data. This may be important problem for coolant void reactivity analysis in HCLWR and LMFBR.

The central reaction rate ratio C8/F9 or C8/F5 obtained by JENDL-3T are larger than those for JENDL-2. The results obtained for C8/F9 are compared in Fig.8.

Figure 9 shows the deviation for U-238 capture cross sections of JENDL-3T from JENDL-2 data. There is considerable discrepancy in the



The effect of fission spectrum change on Kerr



The effect of x change on  $\langle \hat{\sigma}_{t}^{36}/\hat{\sigma}_{t}^{38} \rangle$ Fig. 11

Table 2 NUO2 Doppler reactivity calculated 7DDD-0 accombly

| TOT ZFFR-5 assembly |                        |         |  |  |  |
|---------------------|------------------------|---------|--|--|--|
| Temperature         | Calculation/Experiment |         |  |  |  |
| (k)                 | JENDL-2 J              | ENDL-3T |  |  |  |
| 298 - 487           | 0.879                  | 0.938   |  |  |  |
| 298 - 644           | 0.886                  | 0.947   |  |  |  |
| 298 - 794           | 0.858                  | 0.918   |  |  |  |
| 298 - 935           | 0.896                  | 0.959   |  |  |  |
| 298 -1087           | 0.888                  | 0.951   |  |  |  |
|                     |                        |         |  |  |  |

energy range above 100 KeV. This causes 0.3 0.8 reduction of  $k_{eff}$  and 3 % increase of C8/F9.

In JENDL-3T, fission spectrum was evaluated on the basis of Madland-Nix formula, and it is harder than that of JENDL-2. The  $k_{eff}$  calculated with this harder spectrum becomes larger 0.5 % than the result of JENDL-2, and the threshold reaction rate ratio F8/F5 also becomes larger by 5 %, as observed from Figs. 10 and 11.

The F9/F5 calculated by JENDL-3T improve underprediction observed for the results obtained with JENDL-2. This may be an important reason that the fission cross sections for Pu-239 and U-235 were evaluated on the basis of a simultaneous evaluation method.

Two-dimensional benchmark calculations were performed for ZPPR-9 and FCA-VI-2 assemblies to assess Doppler reactivity, sodium reactivity worth and reaction rate distribution. overestimation for sodium void worth obtained by JENDL-2 is remarkably improved by JENDL-3T as seen in Fig. 12. The NUO2 Doppler worth calculated with JENDL-3T is increased by about 6 % in the comparison with those for JENDL-2 and is in good agreement with the experiments as shown in Table 2. The reaction rate distribution in the outer core region is also improved by about 1.0 % as observed from Fig.13.



F1a.12 Comparison of Na-void reactivity at the ZPPR-9 core



Fig.13 239Pu fission rate distribution at the ZPPR-9 core

Concluding Remarks

The benchmark calculation results JENDL-3T are summarized as follows: In thermal reactor benchmark tests, the  $k_{eff}$ s obtained with the JENDL-3T data were in good agreement with the experiments, though it was observed that they depend considerably on the ratio of H/U. In fast reactor benchmarks, the  $k_{eff}$  calculated with the JENDL-3T data was overestimated for U-cores and underpredicted for Pu-cores. The reaction rate ratios of C8/F9 anf F8/F9 were overestimated for the JENDL-3T data. On the other hand, Doppler and sodium void reactivities, and reaction rate distribution obtained for the JENDL-2 data were significantly improved by using the JENDL-3T data.

The present benchmark tests of JENDL-3T showed that nuclear data to be reevaluated are v, fission cross section and fission spectrum for U-235, fission cross section and fission spectrum for Pu-239, and capture and inelastic scattering cross section for U-238 until the final compilation of JENDL-3.

### REFERENCES

- JENDL Compilation Group (Nuclear Data Center, JAERI): JENDL-3T, Private communication(1987)
- K. Tsuchihashi et al.: JAERI 1285 (1983) and 1302 (1987).
- "Cross Section Evaluation Working Group Benchmark Specifications, "ENDF-202(BNL-19302)
- 4. J. Hardy et al.: Nucl. Sci. Eng., 55,401 (1974).
- 5. L.E. Strawbridge and R.F. Barry: Nucl. Sci. Eng., 23, 58 (1965).
- 6. S.McNeany and D.Jenkins: Nucl. Sci. Eng., 65, 441 (1978).
- R. Chawla et al.: NUREG/CP-0034,902 (1982).
  H. Takano et al.: JAERI-M82-072 (1982).
- 9. H. Takano and K. Kaneko.: JAERI-M 88-065(1988).